3.64 \(\int \frac {\sec ^3(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(b \sec (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=154 \[ \frac {3 (8 A+5 C) \sin (c+d x) (b \sec (c+d x))^{2/3} \, _2F_1\left (-\frac {1}{3},\frac {1}{2};\frac {2}{3};\cos ^2(c+d x)\right )}{16 b^2 d \sqrt {\sin ^2(c+d x)}}+\frac {3 B \sin (c+d x) (b \sec (c+d x))^{5/3} \, _2F_1\left (-\frac {5}{6},\frac {1}{2};\frac {1}{6};\cos ^2(c+d x)\right )}{5 b^3 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{5/3}}{8 b^3 d} \]

[Out]

3/16*(8*A+5*C)*hypergeom([-1/3, 1/2],[2/3],cos(d*x+c)^2)*(b*sec(d*x+c))^(2/3)*sin(d*x+c)/b^2/d/(sin(d*x+c)^2)^
(1/2)+3/5*B*hypergeom([-5/6, 1/2],[1/6],cos(d*x+c)^2)*(b*sec(d*x+c))^(5/3)*sin(d*x+c)/b^3/d/(sin(d*x+c)^2)^(1/
2)+3/8*C*(b*sec(d*x+c))^(5/3)*tan(d*x+c)/b^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {16, 4047, 3772, 2643, 4046} \[ \frac {3 (8 A+5 C) \sin (c+d x) (b \sec (c+d x))^{2/3} \, _2F_1\left (-\frac {1}{3},\frac {1}{2};\frac {2}{3};\cos ^2(c+d x)\right )}{16 b^2 d \sqrt {\sin ^2(c+d x)}}+\frac {3 B \sin (c+d x) (b \sec (c+d x))^{5/3} \, _2F_1\left (-\frac {5}{6},\frac {1}{2};\frac {1}{6};\cos ^2(c+d x)\right )}{5 b^3 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C \tan (c+d x) (b \sec (c+d x))^{5/3}}{8 b^3 d} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(3*(8*A + 5*C)*Hypergeometric2F1[-1/3, 1/2, 2/3, Cos[c + d*x]^2]*(b*Sec[c + d*x])^(2/3)*Sin[c + d*x])/(16*b^2*
d*Sqrt[Sin[c + d*x]^2]) + (3*B*Hypergeometric2F1[-5/6, 1/2, 1/6, Cos[c + d*x]^2]*(b*Sec[c + d*x])^(5/3)*Sin[c
+ d*x])/(5*b^3*d*Sqrt[Sin[c + d*x]^2]) + (3*C*(b*Sec[c + d*x])^(5/3)*Tan[c + d*x])/(8*b^3*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rule 3772

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
*Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^3(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(b \sec (c+d x))^{4/3}} \, dx &=\frac {\int (b \sec (c+d x))^{5/3} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx}{b^3}\\ &=\frac {\int (b \sec (c+d x))^{5/3} \left (A+C \sec ^2(c+d x)\right ) \, dx}{b^3}+\frac {B \int (b \sec (c+d x))^{8/3} \, dx}{b^4}\\ &=\frac {3 C (b \sec (c+d x))^{5/3} \tan (c+d x)}{8 b^3 d}+\frac {(8 A+5 C) \int (b \sec (c+d x))^{5/3} \, dx}{8 b^3}+\frac {\left (B \left (\frac {\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \frac {1}{\left (\frac {\cos (c+d x)}{b}\right )^{8/3}} \, dx}{b^4}\\ &=\frac {3 B \, _2F_1\left (-\frac {5}{6},\frac {1}{2};\frac {1}{6};\cos ^2(c+d x)\right ) (b \sec (c+d x))^{5/3} \sin (c+d x)}{5 b^3 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C (b \sec (c+d x))^{5/3} \tan (c+d x)}{8 b^3 d}+\frac {\left ((8 A+5 C) \left (\frac {\cos (c+d x)}{b}\right )^{2/3} (b \sec (c+d x))^{2/3}\right ) \int \frac {1}{\left (\frac {\cos (c+d x)}{b}\right )^{5/3}} \, dx}{8 b^3}\\ &=\frac {3 (8 A+5 C) \, _2F_1\left (-\frac {1}{3},\frac {1}{2};\frac {2}{3};\cos ^2(c+d x)\right ) (b \sec (c+d x))^{2/3} \sin (c+d x)}{16 b^2 d \sqrt {\sin ^2(c+d x)}}+\frac {3 B \, _2F_1\left (-\frac {5}{6},\frac {1}{2};\frac {1}{6};\cos ^2(c+d x)\right ) (b \sec (c+d x))^{5/3} \sin (c+d x)}{5 b^3 d \sqrt {\sin ^2(c+d x)}}+\frac {3 C (b \sec (c+d x))^{5/3} \tan (c+d x)}{8 b^3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.39, size = 699, normalized size = 4.54 \[ -\frac {6 i 2^{2/3} B \left (\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{2/3} \left (1+e^{2 i (c+d x)}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};-e^{2 i (c+d x)}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{5 d \sec ^{\frac {2}{3}}(c+d x) (b \sec (c+d x))^{4/3} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)}+\frac {3 A \csc (c) e^{-i d x} \left (\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{2/3} \left (1+e^{2 i (c+d x)}\right )^{2/3} \left (\left (-1+e^{2 i c}\right ) e^{2 i d x} \, _2F_1\left (\frac {2}{3},\frac {5}{6};\frac {11}{6};-e^{2 i (c+d x)}\right )-5 \sqrt [3]{1+e^{2 i (c+d x)}}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{5 \sqrt [3]{2} d \sec ^{\frac {2}{3}}(c+d x) (b \sec (c+d x))^{4/3} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)}+\frac {3 C \csc (c) e^{-i d x} \left (\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}\right )^{2/3} \left (1+e^{2 i (c+d x)}\right )^{2/3} \left (\left (-1+e^{2 i c}\right ) e^{2 i d x} \, _2F_1\left (\frac {2}{3},\frac {5}{6};\frac {11}{6};-e^{2 i (c+d x)}\right )-5 \sqrt [3]{1+e^{2 i (c+d x)}}\right ) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{8 \sqrt [3]{2} d \sec ^{\frac {2}{3}}(c+d x) (b \sec (c+d x))^{4/3} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)}+\frac {\left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac {3 (8 A+5 C) \csc (c) \cos (d x)}{8 d}+\frac {3 \sec (c) \sec (c+d x) (8 B \sin (d x)+5 C \sin (c))}{20 d}+\frac {6 B \tan (c)}{5 d}+\frac {3 C \sec (c) \sin (d x) \sec ^2(c+d x)}{4 d}\right )}{(b \sec (c+d x))^{4/3} (A \cos (2 c+2 d x)+A+2 B \cos (c+d x)+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^3*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(b*Sec[c + d*x])^(4/3),x]

[Out]

(((-6*I)/5)*2^(2/3)*B*(E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x))))^(2/3)*(1 + E^((2*I)*(c + d*x)))^(2/3)*Hyperg
eometric2F1[1/3, 2/3, 4/3, -E^((2*I)*(c + d*x))]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(d*(A + 2*C + 2*B*Co
s[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(2/3)*(b*Sec[c + d*x])^(4/3)) + (3*A*(E^(I*(c + d*x))/(1 + E^((2
*I)*(c + d*x))))^(2/3)*(1 + E^((2*I)*(c + d*x)))^(2/3)*Csc[c]*(-5*(1 + E^((2*I)*(c + d*x)))^(1/3) + E^((2*I)*d
*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[2/3, 5/6, 11/6, -E^((2*I)*(c + d*x))])*(A + B*Sec[c + d*x] + C*Sec[c
+ d*x]^2))/(5*2^(1/3)*d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(2/3)*(b*Sec[
c + d*x])^(4/3)) + (3*C*(E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x))))^(2/3)*(1 + E^((2*I)*(c + d*x)))^(2/3)*Csc[
c]*(-5*(1 + E^((2*I)*(c + d*x)))^(1/3) + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[2/3, 5/6, 11/6, -E
^((2*I)*(c + d*x))])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(8*2^(1/3)*d*E^(I*d*x)*(A + 2*C + 2*B*Cos[c + d*
x] + A*Cos[2*c + 2*d*x])*Sec[c + d*x]^(2/3)*(b*Sec[c + d*x])^(4/3)) + ((A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)
*((3*(8*A + 5*C)*Cos[d*x]*Csc[c])/(8*d) + (3*C*Sec[c]*Sec[c + d*x]^2*Sin[d*x])/(4*d) + (3*Sec[c]*Sec[c + d*x]*
(5*C*Sin[c] + 8*B*Sin[d*x]))/(20*d) + (6*B*Tan[c])/(5*d)))/((A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*
(b*Sec[c + d*x])^(4/3))

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \sec \left (d x + c\right )^{3} + B \sec \left (d x + c\right )^{2} + A \sec \left (d x + c\right )\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {2}{3}}}{b^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2 + A*sec(d*x + c))*(b*sec(d*x + c))^(2/3)/b^2, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^3/(b*sec(d*x + c))^(4/3), x)

________________________________________________________________________________________

maple [F]  time = 0.88, size = 0, normalized size = 0.00 \[ \int \frac {\left (\sec ^{3}\left (d x +c \right )\right ) \left (A +B \sec \left (d x +c \right )+C \left (\sec ^{2}\left (d x +c \right )\right )\right )}{\left (b \sec \left (d x +c \right )\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

[Out]

int(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{3}}{\left (b \sec \left (d x + c\right )\right )^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)^3/(b*sec(d*x + c))^(4/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^3\,{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{4/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(b/cos(c + d*x))^(4/3)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^3*(b/cos(c + d*x))^(4/3)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\left (b \sec {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(4/3),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**3/(b*sec(c + d*x))**(4/3), x)

________________________________________________________________________________________